Ir al contenido principal

Mecanismos de Empuje Natural


Mecanismos de empuje natural en yacimientos de hidrocarburos




Los mecanismos de empuje son los responsables de aportar la energía necesaria para que los fluidos puedan desplazarse dentro del yacimiento, es decir, para que los fluidos puedan ser explotados. El empuje del petróleo hacia los pozos se efectúa inicialmente por la presión natural que tiene el yacimiento.

Existen cinco mecanismos de empuje natural: Empuje de agua, capa de gas, gas en solución, empuje de roca (compactación) y segregación gravitacional. Generalmente, se da el caso de que uno de estos mecanismos prevalece sobre los demás, pero la posible presencia de otro mecanismo actuaría como una ayuda adicional.

Es muy importante detectar lo mas anticipadamente el mecanismo natural de empuje o expulsión del petróleo, debido a que se puede obtener un mejor provecho del futuro comportamiento del mecanismo en el yacimiento, y también ayudara para estudiar las futuras aplicaciones de extracción secundarias como inyección de gas, de agua, de vapor, entre otros elementos. Para detectar el mecanismo de producción se acude a la interpretación de una extensa data obtenida durante la perforación de los pozos y durante el comienzo y toda la etapa de producción primaria.

Empuje de agua

En este tipo de reservorio no existe capa de gas, por lo tanto la presión inicial es mayor que la presión del punto de burbuja. Cuando la presión se reduce debido a la producción de fluidos, se crea un diferencial de presión a través del contacto agua-petróleo. De acuerdo con las leyes básicas de flujo de fluidos en medio poroso, el acuífero reacciona haciendo que el agua contenida en él, invada al reservorio de petróleo originando Intrusión o Influjo lo cual no solo ayuda a mantener la presión sino que permite un desplazamiento inmiscible del petróleo que se encuentra en la parte invadida. La Intrusión ocurre debido a la apreciable expansión del agua del acuífero. A medida que se reduce la presión, el agua se expande y reemplaza parcialmente los fluidos extraídos del reservorio.  



Capa de gas

Para este tipo de reservorios se considera que la presión inicial del reservorio es exactamente igual a la presión del punto de burbuja. Esto ocurre debido a que en el transcurso del tiempo geológico, debe existir el equilibrio entre el petróleo y el gas. Con la capa de gas, el petróleo está manteniendo la máxima cantidad de gas en solución. A medida que la presión del reservorio se reduce (por efecto de la producción), la capa de gas se expande causando un desplazamiento inmiscible del petróleo.
La eficiencia de recuperación promedio para un reservorio con capa de gas es del orden de 20 a 40 % del petróleo original en sitio.










Gas en solución

 

Este es el principal mecanismo de empuje para aproximadamente un tercio de todos los reservorios de petróleo del mundo. En un reservorio de Empuje por Gas en Solución no existe capa de gas o Empuje por Agua. La saturación de agua promedia dentro del volumen poroso esta cerca al valor irreducible.
La presión inicial del reservorio está sobre o igual a la presión del punto de burbuja. Si asumimos que la presión inicial esta sobre la presión del punto de burbuja, entonces la presión como consecuencia de la producción declinará rápidamente hasta el punto de burbuja. Durante este periodo, todo el gas en el reservorio permanece en solución. Este proceso es a menudo definido como Empuje por Expansión de Fluidos.
Una vez que la presión ha declinado hasta la presión del punto de burbuja, la producción adicional causará que esta decline por debajo del punto de burbuja con la consiguiente evolución del gas libre en el reservorio. Después que la saturación de gas excede la saturación crítica, este se hace móvil.
A fin de que no se forme una capa de gas, la permeabilidad vertical debe ser pequeña. Sobre la base de esto el gas libre fluirá en el reservorio y permitirá que se incremente el GOR observado en los pozos. El mecanismo principal se debe al empuje del gas y a la expansión del petróleo. El efecto de la expansión del agua y de la roca es pequeño si se compara a la energía de un gas libre altamente expansible.La eficiencia de recuperación sobre el punto de burbuja esta normalmente en el rango de 3% o menos.

 

 

Drenaje gravitacional

En un reservorio de empuje por segregación, el gas libre a medida que sale del petróleo, se mueve hacia el tope del reservorio mientras que el petróleo hacia abajo debido a la permeabilidad vertical. Para que esto ocurra debe existir suficiente permeabilidad vertical para permitir que las fuerzas gravitacionales sean mayores que las fuerzas viscosas dentro del reservorio. Aunque algunos de estos reservorios no tienen una capa de gas inicial, la recuperación será mayor si esta existe. Un mecanismo similar denominado drenaje gravitacional ocurre si es que el reservorio tiene un gran buzamiento. En este caso el petróleo se mueve hacia abajo y el gas hacia arriba, pero el flujo es paralelo al ángulo de buzamiento, en vez de ser perpendicular a este. En la mayoría de los casos el drenaje gravitacional y empuje por segregación se consideran como el mismo mecanismo.
Si no se considera el aspecto económico, este es el mecanismo de empuje primario más eficiente. Las eficiencias de recuperación están en el rango de 40 a 80 %

Bibliografía

Comentarios

Publicar un comentario

Entradas populares de este blog

Tipos de torres de perforación

  Plataforma Una Plataforma petrolera es una estructura de grandes dimensiones cuya función es extraer petróleo y gas natural de los yacimientos del lecho marino que luego serán exportados hacia la costa. También sirve como vivienda de los trabajadores que operan en ella y como torre de telecomunicaciones. Dependiendo de las circunstancias, la plataforma puede estar fija al fondo del océano, flotar o ser una isla artificial. Debido a su actividad principal, las plataformas petroleras son propensas a sufrir accidentes que pueden ocasionar pérdidas de vidas humanas, derrames de petróleo y graves daños ecológicos. También pueden sufrir vandalismos o ser el blanco de terrorismo, por lo que varios países entrenan unidades especialmente para combatir estas acciones Tipos de instalaciones de perforación Se pueden clasificar ampliamente en 6 tipo diferentes: Equipos de Tierra Equipos Sumergibles Equipos Semi-sumergible Plataformas Auto-Elevable

Tipos de fluidos en el yacimiento

Comportamiento PVT Antes de comenzar a hablar sobre el comportamiento de los fluidos en los yacimientos,  se deben conocer ciertos parámetros que son de gran relevancia en el comportamiento, como son: definición de diagrama de fase, sustancia pura, fase. Sustancia pura Llamamos   sustancia pura   a cualquier material que tiene unas propiedades características que la distinguen claramente de otras. Algunas de estas propiedades son difíciles de medir como color, olor, sabor;   pero otras se pueden determinar con exactitud, por ejemplo la densidad   o las   temperaturas de fusión y ebullición   en unas condiciones dadas Fase El término fase define a alguna parte homogénea y físicamente distinta de un sistema, la cual es separada de las otras partes del sistema por algún límite definido. DIAGRAMA DE FASE SUSTANCIA PURA: Los diagramas de fase permiten tener idea del comportamiento de los fluidos en base a alteraciones de presión, temperatura y volumen

Generalidades de Perforación

Sistemas de Perforación Rotaria El sistema rotatorio es uno de los componentes más importantes del taladro de perforación. Su función principal es hacer girar la sarta de perforación y que la mecha perfore el hoyo hasta la medida dada. Está localizado en la parte central del sistema de perforación. Se pueden utilizar dos sistemas muy importantes de la perforación las cuales son la Mesa Rotatoria o el TopDrive. Los equipos básicos en un taladro para perforar un pozo de petróleo, pueden ser divididos en sistemas, cada cual encargado de una función diferente y que en conjunto logran la puesta en marcha del taladro. Sistema de Potencia   Sistema encargado de generar energía aprovechable por el taladro, especialmente para las operaciones de levantamiento y circulación. Su medida de referencia es el caballo de fuerza "horse-power" Transmisión mecánica de la fuerza La fuerza que sale de los motores se une, a través de uniones hidráulicas o convertidores de